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The problem of the boiling of a pulse-heated liquid is considered with
allowance for spontaneous vapor-phase centers, The theory is com-
pared with the experimental data,

Usually, in calculating vaporization mechanisms the
contribution of fluctuation centers is not taken into ac-
count. However, as experiments on the pulse heating
of liguids show [1, 2], under certain conditions vapor-
ization depends significantly on spontaneous centers of
the fluctuation type. These centers develop at a suf-
ficiently high degree of superheating, and their number
may become so great that the bubbles growing at them
make the chief contribution to vapor formation while
the artificial centers play a secondary role. There
have also been reports of liquids vaporized in a laser
beam [3]. The heating time in experiments [1-3] was
107°—-10* sec. A similar situation develops when suf-
ficiently high tensile stresses are suddenly created in
a liquid causing cavitation.

The frequency of fluctuational nucleation J, ecm™

* sec-!, was theoretically determined in [4—6]:

3 .

J ~ exp [— W/ET"]. 1)

According to Zel'dovich's estimate [5] the time required
to reach a stationary distribution of embryonic bubbles
with respect to size is very short (about 1071 sec);
therefore nonstationarity effects will be neglected. In
the subsequent calculations the function J is given in
the form

J =Bexp®, 2)

where & depends on the pressure and temperature of
the liquid and B = const. The relation between the rates
of growth of the vapor bubble volume and time is taken
in the form

v (1) = kb (6) T (3)

If the growth of the bubble is restrained by inertia
forces at its boundary (the Rayleigh case), thenk =3,
whereas if the rate of growth is limited by the supply
of heat, then k = 1/2. The coefficient b depends on the
superheating of the liquid. We note that in the pulse
regime there is no need to take into account convection
currents in the liquid at least in the initial stage of
vaporization.

We will establish the criterion of impulsive heating
of a boiling liquid when an important part is played by
spontaneous centers. The fraction of the liquid con-
verted into vapor 8 at moment 7 is given by the in-
tegral equation

Bx) = ijJ(T'nl —B (] %
p (1]
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The time 7 is reckoned from the moment at which
6 = T'— Ty = 0. The temperature of the liquid T' de~
pends on the method of heating. The first integral on
the right side of the equation describes the vapor for-
mation at spontaneous centers.

Let the heat g be released in the liquid per unit in-
itial volume per unit time. We write the heat balance

equation in the adiabatic approximation
T
S~‘1,—d1=9?(1-—ﬁ)+u. 5)
p
0

The temperature of the vapor is taken equal to Tg.
Without account for fluctuational nucleation the solu-
tion of system (4), (5) has the form
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An analysis of this equation at g/p! = const shows that
for small g the temperature of the liquid at first rises,
but with the development of vapor formation at the ex-
isting centers passes through a maximum and tends to
Tg. At large g the temperature increases monotonic-
ally. An estimate based on the theory of [4—6] shows
that spontaneous nucleation occurs at a temperature

6 < L/¢', It is convenient to introduce a pulse regime
criterion in terms of the dimensionless complex

=L(i az) " @)
Lo'\p"

The inequality K > 1 serves as the condition of at-
tainment of the intense nucleation temperature. Ac-
cording to Eq. (6) it corresponds to an infinite increase
in the temperature of the liquid. At K > 1 fluctuational
nucleation occurs even at small 3, and the artificial
centers play almost no role.
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If the heating of the liquid is so organized that T' =
= const, then from Eq. (4) we can easily obtain a di-
rect estimate of the vapor fraction of fluctuational
origin €:

*’H‘_IM J(T) o B )l/k
8(1—5) k—m(?*fé—b— . (8)

We shall now consider Eq. (4) when g < 1. We rep-
resent the variation of liquid temperature with time
by a power function

0(t)~1" . (9)

Moreover, we assume that K > 1. Comparison of Eq.
(1) with the expression (2) and the explicit form of the
relation W(T') shows that

d*® ( do
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Then the integrand in Eq. (4) describing vapor forma-
tion at fluctuation centers has a sharply expressed
maximum at t = ty, and 7 — ty = k[<i>(1')]"1 <« 7. In the
region of the maximum it is sufficient to confine one-
self to the linear term in the expansion of @ () in the
neighborhood of the point 7. In these approximations
expression (4) is simplified and may be represented

in the following form:

V(R =Tk + ) [D @11 (1) J (1) (11)

We now turn to the solution of the problem of a
wire immersed in a test liquid and heated by a pulse
of electric current. As shown in [1], the correspond-
ing differential equation can be written in the form of
a one-dimensional heat conduction equation with homo-
geneous boundary and initial conditions

c’p'—a—e—=i9»'ﬂ +q(x, T, 6, 98 ),
ot dx  Ox 0T |x=0

Bx=00, )=0(x, T=0)=0. (12)

The function q describes the heat sources and sinks:

g =208 (x) — p;d 98

5 o5
F () —

x=0

It is assumed that the wire material has good wet-
tability with respect to the liquid.
Differentiating (11) with respect to time, we obtain

V(@) =T (k+ 1) [ (@)]~*b(x) ] (x). (13)

Here and henceforth the approximations are based on
inequalities (10). We represent the solution of Eq. (12)
in the form 6 = 64+ 6_, 64 being the solution of the
unperturbed problem (v" = 0). Then for the perturba-
tion 6_ we obtain the equation

00 _ 0, 00
gt Ox 0x

d de_ vy
_ ‘—‘—6 . L //,
pc 2 () dv | plu
6 (x, 0) = 0_(o0, 7)=0. (14)
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We assume that in the unperturbed casethe temper-
ature of the wire 6,(0, T) varies according to the law
(9). Then the solution of the unperturbed problem co-
incides with the known solution of the problem of the
temperature field near a wall [7]:

8, (%, 1) =0,(0, 2T (n—+1)x

wa%yeum% v= gV 7R (15)

For the approximate solution of problem (12) it is
sufficient to describe the temperature field correctly
at

y = —’2‘— Voelnz & 1. (16)

This latter inequality means that we must consider a

thin wall layer x forming only a small part of the
heated layer x, = 2(3A'7/p'c')*/? [8]. In this case,
neglecting terms quadratic in y, instead of (15) we

obtain
_ r{n+1) ‘/ p'’c
e+ (.x, T)—9+(0, T)[l m R (17)
Equation (14) reduces to the integral equation [9]
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In the approximations already employed the solution
of this equation has the form

—0_{x, 1)= FIo) A — X
{ (1+RV®0, 1)
0x x=0
X exp [—x V@ﬁ}%)ﬁ] ) (18)
where
pcd . G o'Lo(myr e+ 1)
4 VA’I 7! V?\:’ T [ O T)]k+l/2

In the experiments on pulse-heated wires in a liquid

[1,2], R(Ci))l/2 > 1. In this case formula (18) takes the
simpler form
4L b(H)T(k4-1) J(O, 1)
—0_(0, 1)y~ - (19)
O 0= Tow o [ 39
dx x=0

Experimentally, a sharp perturbation due to vigor-
ous boiling is observed in the monotonic variation of
the wire temperature 04+ with time. It is possible to
estimate the observed value of the perturbation - and
measure the temperature T* at which it occurs. In the
experiments [1,2] 6_ ~ 1071-10~2°C, The temper-
ature T* can be calculated using formulas (1) and (19)
and compared with the experimentally measured tem-~
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perature. Such a comparison has been made for n-
hexane and methyl alcohol at various pressures P. In
both cases good agreement is obtained between the ex-
perimental and calculated values of T*. This shows
that vapor formation at fluctuation centers actually
has considerable importance in connection with the
rapid transfer of the liguid to the metastable state.
The data for n-hexane are presented in the table.

Data on the Pulse Heating of
n-Hexane (1~ 3 * 1074 sec)

T*, C
P, bar Ts, C .
Experiment | Calculation

1.0 68.7 189 { 188
2.9 106 182 | 191
5.0 130 195 194
11.2 172 205 203
16.0 193 213 211
20.6 209 220 218
25.7 224 J 2928 227

From formula (19) it can be seen that in principle
it is possible to use experiments with different pulse
durations to study the temperature behavior of the
spontaneous nucleation frequency.

NOTATION

J = Bexp & is the nucleation frequency; W is the
work of formation of critical nucleus; x, d are the
distance from the surface and the diameter of the
wire; g is the power of heat source per unit volume
of liquid; B is the fraction of initial masgs of liquid
converted into vapor;  is the density of artificial
vapor phase centers; v is the volume of vapor bubble
(v = bm); v" is the volume of vapor per unit volume
of the liguid; 7 is the time; T is the temperature; 6 =
=T'—- Tg 0+ and 9. are the unperturbed temperature
and perturbation due to boiling; k is Boltzmann's
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constant or bubble growth exponent; L is the latent
heat of evaporation; p is the density; c is the specific
heat; A is the thermal conductivity; I'k) and &(t) are
the gamma and delta functions; w is the rate of heat
release in wire per unit area of lateral surface. The
quantities A", p', ¢', T' relate to the liquid; the
guantities A, p, c¢ to the wire; the quantities p", T" to
the vapor. A dot denotes differentiation with respect
to time; the subscript s denotes the saturation line. A
prime denotes the mean value.
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